Regression Tree
data("Boston", package = "MASS")
# set the p-value of the permutation test to 0.01
htt_boston <- HTT(medv ~ . , data = Boston, controls = htt_control(pt = 0.01))
htt_boston
# Hypothesis Testing Tree
#
# node, split, n, pvalue
# * denotes terminal node
#
# [1] root (n = 506, pvalue = 0)
# | [2] rm<=7.437 (n = 476, pvalue = 0)
# | | [4] lstat<=15 (n = 314, pvalue = 0)
# | | | [6] rm<=6.797 (n = 256, pvalue = 0)
# | | | | [8] lstat<=4.615 (n = 10) *
# | | | | [9] lstat>4.615 (n = 246, pvalue = 0)
# | | | | | [12] rm<=6.543 (n = 212, pvalue = 0)
# | | | | | | [14] lstat<=7.57 (n = 42) *
# | | | | | | [15] lstat>7.57 (n = 170) *
# | | | | | [13] rm>6.543 (n = 34) *
# | | | [7] rm>6.797 (n = 58) *
# | | [5] lstat>15 (n = 162, pvalue = 0)
# | | | [10] crim<=0.65402 (n = 46) *
# | | | [11] crim>0.65402 (n = 116, pvalue = 0)
# | | | | [16] crim<=11.36915 (n = 77) *
# | | | | [17] crim>11.36915 (n = 39) *
# | [3] rm>7.437 (n = 30) *
# print the split information
htt_boston$frame
# node parent leftChild rightChild statistic pval split var isleaf n
# 1 1 0 2 3 2258.92680 0.00 7.437 rm 0 506
# 2 2 1 4 5 1126.14057 0.00 15 lstat 0 476
# 3 3 1 NA NA 54.73540 NA <leaf> ptratio 1 30
# 4 4 2 6 7 750.08329 0.00 6.797 rm 0 314
# 5 5 2 10 11 201.23810 0.00 0.65402 crim 0 162
# 6 6 4 8 9 284.52923 0.00 4.615 lstat 0 256
# 7 7 4 NA NA 54.33706 NA <leaf> lstat 1 58
# 8 8 6 NA NA 0.00000 NA <leaf> <NA> 1 10
# 9 9 6 12 13 188.93990 0.00 6.543 rm 0 246
# 10 10 5 NA NA 73.70296 NA <leaf> dis 1 46
# 11 11 5 16 17 115.47482 0.00 11.36915 crim 0 116
# 12 12 9 14 15 126.15810 0.00 7.57 lstat 0 212
# 13 13 9 NA NA 20.83679 NA <leaf> nox 1 34
# 14 14 12 NA NA 12.63760 NA <leaf> dis 1 42
# 15 15 12 NA NA 66.02809 NA <leaf> crim 1 170
# 16 16 11 NA NA 32.28858 NA <leaf> lstat 1 77
# 17 17 11 NA NA 76.00906 0.02 <leaf> nox 1 39
# yval
# 1 22.53281
# 2 21.11071
# 3 45.09667
# 4 24.45924
# 5 14.62037
# 6 22.73242
# 7 32.08103
# 8 33.13000
# 9 22.30976
# 10 18.32826
# 11 13.15000
# 12 21.68821
# 13 26.18529
# 14 23.95000
# 15 21.12941
# 16 14.35195
# 17 10.77692
# Visualize HTT
plot(htt_boston)
Classification Tree
htt_iris <- HTT(Species ~., data = iris, controls = htt_control(pt = 0.01))
plot(htt_iris, layout = "tree")
# prediction
table(predict(htt_iris), iris[, 5])
#
# setosa versicolor virginica
# setosa 50 0 0
# versicolor 0 49 5
# virginica 0 1 45
Multivariate regression Tree
data("ENB")
set.seed(1)
idx = sample(1:nrow(ENB), floor(nrow(ENB)*0.8))
train = ENB[idx, ]
test = ENB[-idx, ]
htt_enb = HTT(cbind(Y1, Y2) ~ . , data = train, controls = htt_control(pt = 0.05, R = 99))
# prediction
pred = predict(htt_enb, newdata = test)
test_y = test[, 9:10]
# MAE
colMeans(abs(pred - test_y))
# Y1 Y2
# 0.4808483 1.2228675
# MSE
colMeans(abs(pred - test_y)^2)
# Y1 Y2
# 1.039948 3.594125